Sobolev spaces on graphs
نویسنده
چکیده
max(u,v)∈E |f(u)− f(v)| if p =∞. If G is connected, then the only functions f satisfying ||f ||E,p = 0 are constant functions, so || · ||E,p is a norm on each linear space of functions on VG which does not contain constants. Usually we shall consider the subspace in the space of all functions on VG given by ∑ v∈V f(v)dv = 0. The obtained normed space will be called a Sobolev space on G and will be denoted by Sp(G).
منابع مشابه
Isometric classification of Sobolev spaces on graphs
Isometric Sobolev spaces on finite graphs are characterized. The characterization implies that the following analogue of the Banach-Stone theorem is valid: if two Sobolev spaces on 3-connected graphs, with the exponent which is not an even integer, are isometric, then the corresponding graphs are isomorphic. As a corollary it is shown that for each finite group G and each p which is not an even...
متن کاملOn approximation of functions from Sobolev spaces on metric graphs
Some results on the approximation of functions from the Sobolev spaces on metric graphs by step functions are obtained. In particular, we show that the approximation numbers an of the embedding operator of the Sobolev space L (G) on a graph G of finite length |G| into the space L(G, μ), where μ is an arbitrary finite Borel measure on G, satisfy the inequality an ≤ |G| 1/p′μ(G)1/pn−1, 1 < p < ∞....
متن کاملRenormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces
The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega, $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...
متن کاملFunction spaces and Hausdorff dimension on fractals
We start by surveying a possible approach for function spaces of Besov type on special closed subsets of Rn. Afterwards we recall that, in the case of Sobolev spaces and Besov spaces on Rn, the Hausdorff dimension for the graphs of continuous functions belonging to such spaces has been studied by several authors, and that in the case of Besov spaces the final answer concerning the maximal possi...
متن کاملOn a p(x)-Kirchho equation via variational methods
This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.
متن کاملAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کامل